MARCKS contributes to stromal cancer-associated fibroblast activation and facilitates ovarian cancer metastasis
نویسندگان
چکیده
The Cancer Genome Atlas network has revealed that the 'mesenchymal' epithelial ovarian cancer (EOC) subtype represents the poorest outcome, indicating a crucial role of stromal cancer-associated fibroblasts (CAFs) in disease progression. The cooperative role of CAFs in EOC metastasis has long been recognized, but the mechanisms of stromal CAFs activation are still obscure. Therefore, we carried out an integrative analysis to identify the regulator genes that are responsible for CAFs activation in microdissected tumor stroma profiles. Here, we determined that myristoylated alanine-rich C-kinase substrate (MARCKS) was highly expressed in ovarian stroma, and was required for the differentiation and tumor promoting function of CAFs. Suppression of MARCKS resulted in the loss of CAF features, and diminished role of CAFs in supporting tumor cell growth in 3D organotypic cultures and in murine xenograft model. Mechanistically, we found that MARCKS maintained CAF activation through suppression of cellular senescence and activation of the AKT/Twist1 signaling. Moreover, high MARCKS expression was associated with poor patient survival in EOC. Collectively, our findings identify the potential of MARCKS inhibition as a novel stroma-oriented therapy in EOC.
منابع مشابه
Stromal Expression of MARCKS Protein in Ovarian Carcinomas Has Unfavorable Prognostic Value
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Identification of new therapeutic targets is crucial. MARCKS, myristoylated alanine-rich C-kinase substrate, has been implicated in aggressiveness of several cancers and MARCKS inhibitors are in development. Using immunohistochemistry (IHC), we retrospectively assessed MARCKS expression in epithelial and stromal cells of 1...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملExpression of FAP is correlated with clinical prognosis in ovarian cancer patients
Background: Ovarian cancer is the second most common cancer in women and the leading cause of cancer-related death from gynecological cancer. Fibroblast activation protein (FAP) is best known for its presence in stromal cancer-associated fibroblasts (CAFs). The aim of this study was to investigate the expression of FAP in ovarian cancer and its significance in clinical prognosis. Material and m...
متن کاملCD117 Expression in Fibroblasts-Like Stromal Cells Indicates Unfavorable Clinical Outcomes in Ovarian Carcinoma Patients
The stem cell factor (SCF) receptor CD117 (c-kit), is widely used for identification of hematopoietic stem cells and cancer stem cells. Moreover, CD117 expression in carcinoma cells indicates a poor prognosis in a variety of cancers. However the potential expression in tumor microenvironment and the biological and clinical impact are currently not reported. The expression of CD117 was immunohis...
متن کاملElevated MARCKS phosphorylation contributes to unresponsiveness of breast cancer to paclitaxel treatment
Accumulating evidence has suggested that myristoylated alanine-rich C-kinase substrate (MARCKS) is critical for regulating multiple pathophysiological processes. However, the molecular mechanism underlying increased phosphorylation of MARCKS at Ser159/163 (phospho-MARCKS) and its functional consequence in neoplastic disease remain to be established. Herein, we investigated how phospho-MARCKS is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016